
Visualisation of the
Boehm-Demers-Weiser

Conservative Garbage Collector
4th Year Project— 2001/02

Paul Dempster — 9805441

Department of Computer Science

University of Glasgow

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.1/22



Garbage Collection

� Automated memory management

� Remove errors

� Reduce development time

� Increase performance?

� Everyone is using it then...

� “I can do better”

� Complex collector behaviour

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.2/22



Boehm-Demers-Weiser GC

� C based conservative collector

� 40,000 lines of code

� Multi-platform

� Userland support

� Widely used to provide GC to language
runtimes

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.3/22



BDW Operation

� Conservative GC

� Mark & Sweep algorithm

� No separate GC thread

� Heap segmented into chunks and blocks

� Large and small objects

� Sweeping on demand

� Small object blocks swept to satisfy
allocation

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.4/22



� Generic heap visualisation framework

� Client-Server architecture

� Coarse-grain monitoring

� Presents attributes that implementor
considers useful

� All customisation within server

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.5/22



Motivation

� No existing conservative collectors with
GCspy support

� Test generic visualisation claim

� Provide insight into BDW GC operation

� Automatic support for many languages

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.6/22



GCspy Architecture

Space
Renderer

1

Stream 0

Stream 1

Stream 0

Stream 1

Stream 2

Roots

Used

Space
Renderer

0

Objects

Dirty

Marked

Comms Comms

Visualiser Frame

Socket

Server Client

Data Collection

Running application

Generic GCspy framework

Space 0 Space 1

Server Infrastructure Client Infrastructure

BDW library

BDW GC library

GC−dependent GCspy customisation

Application

M−S GC

Lists
Space Heap

Spaces

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.7/22



The Driver

� Maps collector state to GCspy abstractions

� Decides the shape of the visualisation

� Selected 3-Space design:

� Main area shows block-level detail

� 2nd area summaries previous at chunk
level

� Free-/Black-list and Finalisers area

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.8/22



Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.9/22



Driver Structure

� Block data held per chunk; chunks held in a
linked-list

� Secondary spaces data automatically
calculated

� Generic enough to replace Mark&Sweep,
Mark&Compact, etc. drivers

� GCspy framework required modification for
expanding heaps.

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.10/22



Driver Tests

� Wrote an application which randomly
allocated, and removed references to, objects

� Revealed no instabilities

� GCspy visualisation did reveal a bug in the
test application!

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.11/22



Into the BDW GC

� Most time consuming part of the project

� Had to identify data structures that provide
information we wish to visualise

� Code comments aimed at those already
familiar with the collector

� Utilised “Understanding for C++”
reverse-engineering software (Scientific
Toolworks, Inc.)

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.12/22



Large Objects

� Caused a number of problems

� Supplied utility macros caused errors

� Modified collecting strategy to treat them
similarly to small objects

� Large objects crossing chunk boundaries
unexpected

� Added support to driver

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.13/22



Problems with Integration

� Using a debugger difficult

� Dirty bit mechanism stopped debugger at
every line

� How to obtain roots data unclear

� Strong suspicion driver is using the wrong
data structure

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.14/22



Server Testing

� Tested integration with gctest, the collectors
stress-test application

� Showed that GCspy code in the collector was
stable and reliable.

� Important for encouraging adoption

� Revealed interesting collector behaviour...

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.15/22



gctest

� Small object block sweeping could be seen in
action

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.16/22



gctest

� The internal behaviour of the collector is
shown

� Because GCspy is built into the collector, we
can attribute this behaviour correctly

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.17/22



Large objects in Applications

� Visual patterns make it easy to identify when
space is being wasted

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.18/22



Aggressive heap expansion

� For small applications the collector expands
the heap too soon, and in too great
increments

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.19/22



BDW GC Conclusions

� 14 years of development, works pretty well!

� GCspy reveals possible over-aggressive heap
expansion

� Provides visual reference of expected
behaviour for ports to other architectures

� Easy to distribute evidence of unusual
behaviour

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.20/22



GCspy Conclusions

� Not quite generic enough

� Required modifications make it even more
flexible

� Highlights limitations in viewing a single
stream at any instant

� Overall provides useful insight into the
memory behaviour of collector and
applications

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.21/22



Overall

� Provides GCspy support for widely used
garbage collector

� First conservative collector supports
generality claim

� BDW GC usage in other language runtimes
provides wide potential userbase, particularly
academic

� Allows programmers to see collectors really
do know what they are doing

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.22/22


	Garbage Collection
	�dw {} GC
	BDW Operation
	gcspy {}
	Motivation
	GCspy Architecture
	The Driver
	includegraphics [scale=0.75]{gcspy-test1}
	Driver Structure
	Driver Tests
	Into the BDW GC
	Large Objects
	Problems with Integration
	Server Testing
	code {gctest}
	code {gctest}
	Large objects in Applications
	Aggressive heap expansion
	BDW GC Conclusions
	GCspy Conclusions
	Overall

