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Garbage Collection

� Automated memory management

� Remove errors

� Reduce development time

� Increase performance?

� Everyone is using it then...

� “I can do better”

� Complex collector behaviour

Visualisation of the Boehm-Demers-Weiser Conservative Garbage Collector – p.2/22



Boehm-Demers-Weiser GC

� C based conservative collector

� 40,000 lines of code

� Multi-platform

� Userland support

� Widely used to provide GC to language
runtimes
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BDW Operation

� Conservative GC

� Mark & Sweep algorithm

� No separate GC thread

� Heap segmented into chunks and blocks

� Large and small objects

� Sweeping on demand

� Small object blocks swept to satisfy
allocation
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� Generic heap visualisation framework

� Client-Server architecture

� Coarse-grain monitoring

� Presents attributes that implementor
considers useful

� All customisation within server
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Motivation

� No existing conservative collectors with
GCspy support

� Test generic visualisation claim

� Provide insight into BDW GC operation

� Automatic support for many languages
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GCspy Architecture
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The Driver

� Maps collector state to GCspy abstractions

� Decides the shape of the visualisation

� Selected 3-Space design:

� Main area shows block-level detail

� 2nd area summaries previous at chunk
level

� Free-/Black-list and Finalisers area
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Driver Structure

� Block data held per chunk; chunks held in a
linked-list

� Secondary spaces data automatically
calculated

� Generic enough to replace Mark&Sweep,
Mark&Compact, etc. drivers

� GCspy framework required modification for
expanding heaps.
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Driver Tests

� Wrote an application which randomly
allocated, and removed references to, objects

� Revealed no instabilities

� GCspy visualisation did reveal a bug in the
test application!
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Into the BDW GC

� Most time consuming part of the project

� Had to identify data structures that provide
information we wish to visualise

� Code comments aimed at those already
familiar with the collector

� Utilised “Understanding for C++”
reverse-engineering software (Scientific
Toolworks, Inc.)
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Large Objects

� Caused a number of problems

� Supplied utility macros caused errors

� Modified collecting strategy to treat them
similarly to small objects

� Large objects crossing chunk boundaries
unexpected

� Added support to driver
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Problems with Integration

� Using a debugger difficult

� Dirty bit mechanism stopped debugger at
every line

� How to obtain roots data unclear

� Strong suspicion driver is using the wrong
data structure
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Server Testing

� Tested integration with gctest, the collectors
stress-test application

� Showed that GCspy code in the collector was
stable and reliable.

� Important for encouraging adoption

� Revealed interesting collector behaviour...
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gctest

� Small object block sweeping could be seen in
action
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gctest

� The internal behaviour of the collector is
shown

� Because GCspy is built into the collector, we
can attribute this behaviour correctly
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Large objects in Applications

� Visual patterns make it easy to identify when
space is being wasted
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Aggressive heap expansion

� For small applications the collector expands
the heap too soon, and in too great
increments
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BDW GC Conclusions

� 14 years of development, works pretty well!

� GCspy reveals possible over-aggressive heap
expansion

� Provides visual reference of expected
behaviour for ports to other architectures

� Easy to distribute evidence of unusual
behaviour
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GCspy Conclusions

� Not quite generic enough

� Required modifications make it even more
flexible

� Highlights limitations in viewing a single
stream at any instant

� Overall provides useful insight into the
memory behaviour of collector and
applications
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Overall

� Provides GCspy support for widely used
garbage collector

� First conservative collector supports
generality claim

� BDW GC usage in other language runtimes
provides wide potential userbase, particularly
academic

� Allows programmers to see collectors really
do know what they are doing
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