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ABSTRACT  

Informally, Occam’s razor states, “Given two hypotheses which 
equally agree with the observed data, choose the simpler”, and 

has become a central guiding heuristic in the empirical sciences 
and in particular machine learning. We criticize previous 
arguments for the validity of Occam’s razor.  

The nature of hypotheses spaces is explored and we observe a 
correlation between the complexity of a concept yielded by a 
hypothesis and the frequency with which it is represented when 
the hypothesis space is uniformly sampled. We argue that there is 
not a single best hypothesis but a set of hypotheses which give 
rise to the same predictions (i.e. the hypotheses are semantically 
equivalent), whereas Occam’s razor suggests there is a single best 
hypothesis. We prefer one set of hypotheses over another set 

because it is the larger set (and therefore the most probable) and 
the larger set happens to contain the simplest consistent 
hypothesis. This gives the appearance that simpler hypotheses 
generalize better. Thus, the contribution of this paper is the 
justification of Occam’s razor by a simple counting argument.    

INTRODUCTION 

Occam's razor has been adopted by the machine learning 
community and has been taken to mean “The simplest explanation 
is best” (Cover et. al. [1] page 1). It has been argued that simpler 
explanations are more probable to give better predictions on 
unobserved data. Kearns et. al. [2] (page 32) state that Occam's 
razor has become a central doctrine of scientific methodology.  

Why is a simpler hypothesis more likely to generalize to unseen 
data? While Occam's razor may feel intuitively satisfying, it is 
worthy of further investigation. We may have two hypotheses that 
agree with all the observations but we cannot dismiss either as 

being 'wrong' if they agree with the observed data. Both 
hypotheses are equally good accounts of the data. 

Webb [6] states "Several attempts have been made to provide 

theoretical support for the principle of Occam's razor in the 

machine learning context. However, these amount to no more 
than proofs that there are few simple hypotheses and that the 
probability that one of any such small selection of hypotheses will 
fit the data is low".  

Based on Langdon’s work on hypothesis spaces [3], we make the 
observation that there is a correlation between the complexity of a 
function and the number of instances of programs representing the 

given function. Therefore, we make the central assumption that 
simple functions are represented in more ways than complex 
functions, and therefore occur with higher frequency.  

A set of hypotheses that make the same predictions are equally 
valid accounts of what is observed. We base our justification of 
Occam’s razor on a uniform distribution over the set of 
hypotheses.  In doing so, we are constructing an argument based 
on syntax, rather than an argument based on semantics. We 
believe this to be a plausible approach as it is the underlying 
syntax which is responsible for the semantics we observe. 

The intuition behind our argument is as follows. There are more 
hypotheses that correspond to the simplest hypothesis (i.e. 
produce the same function), and fewer hypotheses that correspond 
to more complex hypotheses. Therefore we prefer the set 

corresponding to the simplest hypothesis purely because this set is 
larger.  

There are Fewer Simpler Hypotheses  

Mitchell [4] (page 65), Russell et. al. [5] (page 535) and Cover et. 
al. [1] (page 161) argue there are fewer simpler hypotheses than 
more complex ones so is less likely a simpler hypothesis 

coincidentally fits the data. While this is true, it then raises the 
question that, while there are also many complex hypotheses that 
fit the data but will fail to generalize, there are also many complex 
hypotheses that do fit subsequent data. It still does not explain 
why we should choose a shorter hypothesis in preference to 
another one. We should not arbitrarily discard more complex 
hypotheses which are consistent with the data.  

Formally Stating Occam’s Razor  

We can state preference as a probability where p(f) is the 
probability of the function f is correct. Thus a preference for one 
function over another can be stated as  

p(f1) > p(f2) 

We denote the complexity of a function as c(f), and can then say 
that one function is more complex than another as the statement  

c(f1) < c(f2) 

 i.e. f1 is less complex than f2. We can combine these two 
statements to arrive at a formal statement of Occam’s razor;  

p(f1) > p(f2) c(f1) < c(f2) 

In words, f1 is preferred (i.e. more probable) to f2, if and only if f1 
is simpler (i.e. less complex) than f2.  

DEFINITIONS 

A program is an algorithm which implements a function. A 
function is a mapping from one set (the domain) to another set 
(the range). Programs correspond to syntactic objects and 

functions correspond to semantic objects. A hypothesis 
corresponds to a program and predictions correspond to a function 
(i.e. the semantic interpretation of the syntactic object). Primitive 
functions are a set of atomic functions used to construct programs.  
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The size of a program is defined as the total number of bits it 
contains. The complexity of a function is the size of the smallest 
description (i.e. program) which expresses it, given the primitive 
functions we have at our disposal. A function, a semantic entity, is 
associated with a complexity while a program, a syntactic entity, 

is associated with a size (i.e. we talk about the size of a syntax 
parse tree and the complexity of the function that the parse tree 
expresses).  

A hypothesis space consists of all the instances of a given type of 
representation. As a definition of hypothesis space, we take that 
given in Mitchell [4] (chapter 1): “A hypothesis space is the set of 
all instances of some representation (with some size limit 
imposed)”. Concept space is the set of concepts represented by 
the hypotheses in the hypothesis space. For example, a hypothesis 
space of Java programs maps to a concept space of functions, and 
this mapping is done via the Java Virtual Machine i.e. I(p)=f, 

where p is a Java program, f is a function and I  is the Java Virtual 
Machine which interprets the program p as the function f. It 
follows that, I(pi)=I(pj) implies the programs pi and pj compute 

the same function and are semantically equivalent, while pi pj 
implies the programs are syntactically different. A hypothesis 
space is a set of syntactic entities (e.g. programs) and a concept 
space is a set of semantic entities (e.g. functions). 

We define an equivalence class over a hypothesis space. All 
hypotheses mapping to the same concept belong to the same 
equivalence class. This divides the hypothesis space into sets of 
semantically equivalent hypotheses. For example the Java/C 
programs {x=x+1;},{x=1+x;},{x++;}, and {++x;} all belong to 
the same class which could be called increment.  

During the process of induction, we are eliminating functions not 
consistent with the data, and therefore discarding the equivalence 
classes (i.e. sets of programs) which these functions correspond 

to. This leaves us with a set of equivalence classes, all of which 
are consistent with the data. We are going to argue that we choose 
the largest equivalence class of this set, simply because it is the 
largest, and therefore the most probable.  

PROOF OF OCCAM’S RAZOR   

We begin by defining our notation. P is the hypothesis space. |P| 
is the size of the space. F is the concept space. |F| is the size of 
the space. If two programs pi and pj map to the same function 
(I(pi)=f=I(pj)), they belong to the same equivalence class (i.e. 
pi [pj] ↔ I(pi)=I(pj)). The notation [pi] denotes the equivalence 

class which contains the program pi (i.e. given I(pi)=I(pj),then 
[pi]=[pj]). The size of equivalence class [pi] is |[pi]|.  

We make two assumptions. The first assumption is that we 
uniformly sample the hypothesis space, and therefore the 
probability of sampling a given program is 1/|P|. The second 
assumption is that there are fewer hypotheses that represent 
complex functions: |[p1]|>|[p2]|↔c(f1)<c(f2), where I(p1)=f1 
and I(p2)=f2. Note that |[p1]|/|P| = p(f1).  

We begin the proof by a statement of the second assumption; 

|[p1]|>|[p2]| ↔c(f1)< c(f2) 

Dividing the left hand side by |P|, 

|[p1]|/|P|>|[p2]|/|P| ↔c(f1)< c(f2) 

As |[p1]|/|P| = p(I(p1)) =p(f1), we can rewrite this as 

p(f1)>p(f2) ↔c(f1)< c(f2) 

This is a mathematical statement of Occam’s razor. In other 

words, we take the probability distribution p(f) to be the frequency 
with which the functions are represented in the hypothesis space 
(i.e. the size of the equivalence class). The assumption is | [p1]| 
>|[p2]|↔ c(f1) < c(f2), where p(I(p1))=p(f1), which we have not 

proved but is reasonable based on empirical work (Langdon [3]). 
We have not explicitly assumed more complex functions are less 

likely, but rather, the size of equivalence classes are larger if they 
contain simpler programs.  

DISCUSSION 

Occam's razor states that a simpler hypothesis is more likely to 
generalize to unseen data than a more complex hypothesis. We 
agree that this appears to be true; however we argue that the 

underlying reason is that the function corresponding to the simpler 
description, consistent with the observed data, is represented more 
frequently in the hypothesis space and this is the reason it should 
be chosen. We restate Occam's razor:  

“The most probable explanation is the one that is most frequently 
represented in the hypothesis space”. 

Why are some functions represented more frequently than others 
in a given hypothesis space? There are a number of reasons for 
this. The primitive functions may contain functions which are: 
commutative, associative, distributive or invertible. If the set of 
primitive functions contain functions which have any of these 
properties, then there will in general be more than one way that a 
given function can be represented.  

PHYSICAL NATURE OF COMPUTATION  

Occam’s Razor should say something about the physical world, if 
it is to be applied to induction problems arising from the real 
world. The reasons why some functions are more frequent than 
other is that some functions may be commutative, associative, 
distributive or invertible. These properties are present in many 

physical laws we see, for example in conservation laws, it is only 
the total amount of the quantity which is of interest, not the order 
in which it arrived (i.e. the summation of energy is symmetric). 
Many physical systems display the other properties too (e.g. 
electrical circuts).  
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